A ‘missing’ family of classical orthogonal polynomials
نویسندگان
چکیده
منابع مشابه
Q-Hermite Polynomials and Classical Orthogonal Polynomials
We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...
متن کاملClassical Orthogonal Polynomials as Moments
We show that the Meixner, Pollaczek, Meixner-Pollaczek and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials. Running Title: Generating Functions
متن کاملOn Moments of Classical Orthogonal Polynomials
In this work, using the inversion coefficients and some connection coefficients between some polynomial sets, we give explicit representations of the moments of all the orthogonal polynomials belonging to the Askey-Wilson scheme. Generating functions for some of these moments are also provided.
متن کاملOn extreme zeros of classical orthogonal polynomials
Let x1 and xk be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree k. We shall establish sharp inequalities of the form x1 < A, xk > B, which are uniform in all the parameters involved. Together with inequalities in the opposite direction, recently obtained by the author, this locates the extreme zeros of classical orthogonal polynomials with the relative precision,...
متن کاملClassical 2-orthogonal polynomials and differential equations
We construct the linear differential equations of third order satisfied by the classical 2orthogonal polynomials. We show that these differential equations have the following form: R4,n(x)P (3) n+3(x)+R3,n(x)P ′′ n+3(x)+R2,n(x)P ′ n+3(x)+R1,n(x)Pn+3(x)=0, where the coefficients {Rk,n(x)}k=1,4 are polynomials whose degrees are, respectively, less than or equal to 4, 3, 2, and 1. We also show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2011
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/44/8/085201